

ENTRAINEMENT KANGOUROU

page 1/3

Spécial: Années! (J)

Au Kangourou des maths il y a 5 niveaux de questions qui sont notés, du plus facile au plus difficile, E, B, C, J et S. Grâce à leur numéro, ici en gras, vous pouvez retrouver ces questions et leurs corrigés dans les livres et annales Kangourou.

K04C01	Combien var	ut $2004 - 200$	$\times 4$?				
	A) 7216	B) 0	C) 1204	D) 1200	E) 2804		
K00C01	20 % de 200			_, , , , , ,			
	A) 100	B) 200	C) 400	D) 1000	E) 4000		
K01C01		ou calcule 2×	$0 + 0 \times 1$. Le r	ésultat est :			
	A) 2	B) 0	C) 1	D) 2001	E) 3		
K95C03	$1\times9\times9\times5$	-(1+9+9+5)	vaut :				
	A) 0	B) 381	C) 481	D) 429	E) 995		
1995 – 19	994 + 1993 -	iers de 1995 à - 1992 + + 3		tivement ajoutés et	soustraits, co	mme ceci :	
Le résulta		B) 1995	C) 998	D) 0	E) – 997		
K96C03	` .	lus grand nom 9×6 B) 19		C) 1×99×6	D) 1×9>	<96 E) 19×9	6
K98C02	Laquelle de (A) 1 : 1	ces divisions a B) 1998 :		t 1 et pour reste 1 ? C) 1998 : 1 I		7 E) 1997 : 1998))
K05C01		ut 2005 x 10 + 0 B) 22 055		C) 2 525	O) 4 010	E) 202 505	
K98J02	Le tiers de la A) 74	moitié du neu B) 27	vième de 1998 C) 36	8 vaut : D) 37	E) 54		
K00J01 1		00, quelle écrit B) 2 ³ 5 ³	cure convient? C) 2 ⁵ 5 ⁴	D) 2 ⁴ 5 ³	E) 2 ⁴ 5 ⁴		
K05J03 1 A) 20	-			Si l'un de ces nomb O) 4005 E) 10		l est l'autre ?	
K06J01 (A) 39	*	moyenne de 2 4000 C		D) 4004 E) 40	006		
K06J03 (distincts	_	-t-il de nombre	es de quatre ch	niffres, multiples de	e 2006, dont le	es quatre chiffres so	ont
	A) 1	B) 2	C) 3	D) 4	E) 5		

ENTRAINEMENT KANGOUROU

page 2/3

Spécial : Années ! (J)

		nier, a cueilli 2 s ne sont ni des			uée de cerises, un	quart d'abricots.				
	A) 167	B) 334	C) 501	D) 1002	E) 1837					
K01C09 I A) 2	La somme d B) 2000	le 2000 nombre C) 2001		ement positifs est on ne peut pas sa	2001. Quel est le avoir	eur produit ?				
K95C10 (A) 1 ⁹⁹	Quel est le r B)	nombre le plus (19×95) C)		199 ⁵ E) 19	995					
K06J12 Chaque lettre représente un chiffre différent, et chaque chiffre est représenté par HAN une lettre différente. Quel chiffre peut être représenté par la lettre G?										
Querenni	A) 1	- \ -	C) 3	D) 4	E) 5	2006				
K03J25 (4	question sui	bsidiaire, il fau	t répondre un d + □ □ ○ + □ △ △ 2 0 0 3	chiffre de $0 \ a \ 9$). $\Box + \bigcirc = ?$						
K92C16 (Quelle est la A) 1992	n somme des ch B) 992	iffres du nomb C) 818	ore $N = 10^{92} - 92$ D) 808	? E) 798					
K93C27 On a écrit l'un après l'autre tous les nombres entiers strictement positifs. Quel chiffre est situé à la 1993 ^{ème} place ?										
		B) 7	C) 6	D) 5	E) 4					
K94C13 J'effectue le produit de tous les nombres impairs compris entre 1 et 1994. Quel est le chiffre des unités du produit obtenu ?										
	A) 1	B) 3	C) 5	D) 7	E) 9					
K95C22 (Quelle est la A) 6	somme des ch	iffres du nomb	ore $10^{95} - 95$? D) 663	E) 842					
K97C23 On divise par 15 le nombre « 100 » dont l'écriture décimale est un 1 suivi de 1997 zéros. Quel reste obtient-on ?										
20105. Qui	A) 1	B) 6	C) 9	D) 10	E) 12					
somme de	tous les no 901 + 1902	mbres entiers d + + 1999	le 100 à 199 :) – (100 + 101	entiers de 1900 à + 102 + + 1	1999 puis on en 99). E) 1 900 000	retranche la				

ENTRAINEMENT KANGOUROU

page 3/3

Spécial: Années! (J)

K03C14 Vous disposez de 6 bâtons de longueur 1 cm, 2 cm, 3 cm, 2001 cm, 2002 cm et 2003 cm. Vous devez en choisir trois pour former un « vrai » triangle.

De combien de façons différentes pouvez-vous le faire ?

- A) 1
- B) 3
- D) 6
- E) plus de 50

K03J08 On considère tous les nombres de quatre chiffres que l'on peut écrire avec les quatre chiffres du nombre 2003. La somme de tous ces nombres vaut :

- A) 5005
- B) 5555
- C) 16665
- D) 1110
- E) 15555

K03J17 Combien vaut le produit

$$\left(1 + \frac{1}{2}\right) \times \left(1 + \frac{1}{3}\right) \times \dots \times \left(1 + \frac{1}{2002}\right) \times \left(1 + \frac{1}{2003}\right) ?$$

- D) 1002
- E) 1001

K03J18 *N* est le nombre 111.....111 formé de 2003 chiffres 1.

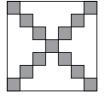
Combien vaut la somme des chiffres du produit $2003 \times N$?

- A) 10000
- B) 10015
- C) 10020
- D) 10030
- E) 2003×2003

K04J18 Dans un carré de côté 2003, les carrés de côté 1 sur les diagonales sont coloriés (la figure montre la situation avec un carré de côté 7). Combien mesure la surface restée blanche?

- A) 2002^2

- B) 2002×2001 C) 2003^2 D) 2003×2004
- E) 2004^2



K07J19 Dans ce village, tous les habitants ont un nombre de cheveux différent. Personne n'a exactement 2007 cheveux. Mathieu est l'habitant du village qui a le plus de cheveux. Il y a plus d'habitants dans le village que Mathieu n'a de cheveux. Quel est le plus grand nombre possible d'habitants de ce village?

- A) On ne peut pas le déduire
- B) 2006
- C) 2007
- D) 2008
- E) 2009

K95C29 Dans le nombre de huit chiffres 1.9.9.5., on doit remplacer les points par des chiffres en s'arrangeant pour que le nombre obtenu soit divisible par 2, 5 et 9.

Combien de nombres différents peut-on fabriquer satisfaisant à ces conditions ?

- A) 111
- B) 105
- C) 104
- D) 102
- E) 81

K96C30 Dans la suite de chiffres 122333444455555....., chaque entier est écrit autant de fois que sa valeur. Quel est le 1996 ème chiffre écrit?

- A)0
- B) 3
- C) 4
- D) 5
- E) 6

K04J25 (question subsidiaire, il faut répondre un chiffre de 0 à 9).

Le nombre 2004 est divisible par 12 et la somme de ses chiffres vaut 6. Combien de nombres s'écrivant avec 4 chiffres et strictement inférieurs à 2004 possèdent ces deux propriétés ?

Spécial : Années ! (J) Solutions

page 1/4

K04C01: Réponse C.

Il s'agit de respecter les priorités des opérations : 2004 - 800 = 1204.

K00C01: Réponse C.

 $(2000 \div 100) \times 20 = 20 \times 20 = 400.$

K01C01: Réponse B.

Quelles que soient les erreurs de priorité commises, la réponse est 0.

K95C03: Réponse B.

 $1 \times 9 \times 9 \times 5 - (1 + 9 + 9 + 5) = 405 - 24 = 381.$

K95C05: Réponse C.

Grouper: (1995 - 1994) + (1993 - 1992) + ... + (3 - 2) + (1 - 0).

Il y a $\frac{1996}{2}$ fois 1, soit 998.

K96C03 Solution: Réponse E.

 $1 \times 9 \times 9 \times 6 < 600$, $19 \times 9 \times 6 < 1200$, $1 \times 99 \times 6 < 600$, $1 \times 9 \times 96 < 900$, $19 \times 96 = 1824$.

K98C02 Solution: Réponse D.

 $1998 = 1 \times 1997 + 1$.

K05C01: Réponse B.

 $2005 \times 10 + 2005 = 20050 + 2005 = 22055$.

K98J02: Réponse D.

 $\frac{1}{3} \times \frac{1}{2} \times \frac{1}{9} \times 1998 = 37.$

K00J01: Réponse D.

 $2000 = 2 \times 10^3 = 2 \times 2^3 \times 5^3 = 2^4 \times 5^3$.

K05J03: Réponse D.

Soit X le nombre cherché. On sait que $\frac{5+X}{2} = 2005$. Donc $X = 2 \times 2005 - 5 = 4005$.

K06J01: Réponse D.

 $\frac{2006 + 6002}{2} = \frac{8008}{2} = 4004.$

K06J03: Réponse C.

Les nombres de quatre chiffres divisibles par 2006

sont : 2006, 4012, 6018 et 8036. Seuls les 3 derniers ont leurs quatre

chiffres différents.

Spécial : Années ! (J) SOLUTIONS

page 2/4

K04J02: Réponse C.

Si on enlève une moitié plus un quart, il reste le quart des fruits, soit 501.

K01C09: Si les 2000 entiers strictement positifs étaient 1, leur somme serait 2000. Donc tous les entiers sont 1 sauf un qui est 2. Le produit est donc 2.

K95C10: Réponse C.

$$1^{995} = 1$$
; $19 \times 95 < 2000$; $19^{95} > 10^{95}$; $199^5 < 1000^5$ et $1000^5 = 10^{15}$; $1995 < 2000$.

K06J12: Réponse A.

Si G vaut 1, alors nécessairement N vaut 4 ; K vaut 6 et A vaut 8. C'est correct et il n'y a qu'une seule réponse juste.

C'est donc la réponse A. (Il y a une autre solution au cryptarithme :

K = 6, A = 5, N = 8 et G = 9, réponse non proposée.)

K03B25 = K03C25 = K03J25: Réponse 6.

Regardons le chiffre des centaines : le triple du chiffre \square , plus la retenue (qui peut valoir 0, 1 ou 2), doit valoir 20. Or $20 = 3 \times 6 + 2$. C'est donc que la retenue vaut 2 et que $\square = 6$. Alors, en regardant les dizaines, $12 + \triangle$ ou $12 + \triangle + 1$ ou $12 + \triangle + 2$ vaut 20.

Si \triangle vaut 8, en regardant les unités, on doit avoir 6 + \bigcirc + 8 = 3, ce qui est impossible.

Si \triangle vaut 6, en regardant les unités, on doit avoir $6 + \bigcirc + 6 = 23$, ce qui est impossible puisque $\bigcirc < 10$

Donc $\triangle = 7$ et on a bien $6 + \bigcirc + 7 = 13$ avec $\bigcirc = 0$. Finalement $\square + \bigcirc = 6$.

K92C16: Réponse C.

 $9 \times 90 + 0 + 8 = 818$.

K93C27: Réponse B.

On écrit 9 nombres de 1 chiffre donc 9 chiffres ; puis 90 nombres de 2 chiffres donc 180 chiffres ; 1993 - (180 + 9) = 1993 - 189 = 1804, $1804 = 3 \times 601 + 1$; le premier nombre de 3 chiffres est 100 ; le $601^{\text{ème}}$ nombre de 3 chiffres est 700 ; et le $1993^{\text{ème}}$ chiffre est le 7 du nombre 701.

K94C13: Réponse C.

Deux remarques : Tout nombre impair multiple de 5 se termine par 5 ; tout produit de nombres impairs est impair. Le chiffre cherché est donc 5.

K95C22: Réponse E.

10 puissance 95, c'est 1 suivi de 95 zéros. Si je lui ôte 95, le chiffre des unités du nombre obtenu est 5, celui des dizaines est un 0 (attention à la retenue) et tous les autres chiffres sont des 9. Il y a donc 95 - 2 = 93 chiffres 9 dans ce nombre.

La somme des chiffres de $10^{95} - 95$ est $5 + 0 + 93 \times 9 = 842$.

Spécial : Années ! (J) SOLUTIONS

page 3/4

K97C23: Réponse D.

Si on divise par 15 un nombre tel que 1 000, 10 000, 100 000, etc., on obtient toujours un reste égal à 10.

$$(10^n = 10^{n-2} \times 90 + 10^{n-3} \times 90 + ... + 10^1 \times 90 + 90 + 10$$
 et 90 divisible par 15.)

K99C13: Réponse A.

On enlève les parenthèses et on calcule

(1900-100)+(1901-101)+...+(1999-199) soit une somme de 100 termes, tous égaux à 1800.

K03C14: Réponse D.

L'inégalité triangulaire interdit de faire un triangle avec les 3 petits bâtons, ainsi qu'avec un « grand » et deux petits. Il y a donc nécessairement deux « grands » et un petit (qui ne peut pas être « trop » petit) ou bien les 3 grands.

Cela fait donc 6 solutions: (2001; 2002; 2), (2001; 2002; 3), (2001; 2003; 3), (2002; 2003; 2), (2002; 2003; 3) et (2001; 2002; 2003).

K03J08: Réponse E.

2003 + 2030 + 2300 + 3002 + 3020 + 3200 = 15555.

K03J17: Réponse D.

Il faut effectuer chaque parenthèse. Le produit cherché est alors : $\frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \frac{6}{5} \times \cdots \times \frac{2004}{2003}$. Par une belle série de simplifications à la chaîne, ce produit vaut finalement $\frac{2004}{2}$ soit 1002.

K03J18: Réponse B.

En imaginant posée la multiplication $2003 \times 111...111$, on voit une addition de 2003 termes valant tous 2003, avec un décalage d'un chiffre à chaque fois. On obtient un résultat qui est un nombre de 2006 chiffres, se terminant par 333, commençant par 222 et contenant 2000 chiffres 5 au centre : 222555......555333.

La somme des chiffres de ce produit vaut : $3 \times 2 + 2000 \times 5 + 3 \times 3 = 10015$.

K04J18: Réponse A.

Dans le carré de n carreaux de côté, chaque diagonale comporte n carreaux. L'aire totale est n^2 . Le nombre des carreaux en diagonales est n+n-1, soit 2n-1.

D'où la surface blanche : $n^2 - 2n + 1$ soit $(n-1)^2$.

K07J19: Réponse C.

Si tous les habitants ont un nombre différent de cheveux et que Mathieu est celui qui en a le plus, le nombre de cheveux de Mathieu doit au moins être égal au nombre d'habitants moins un (on peut être chauve !).

On a $h-1 \le m$ en notant h le nombre d'habitants et m le nombre de cheveux de Mathieu.

Or il y a plus d'habitants que Mathieu n'a de cheveux : $m \le h$.

On déduit m = h - 1; et à chaque entier de 0 à m correspond un habitant ayant ce nombre de cheveux.

Comme personne n'a exactement 2007 cheveux, le maximum pour m est 2006, et donc 2007 pour h.

Spécial : Années ! (J) SOLUTIONS

page 4/4

K95C29: Réponse A.

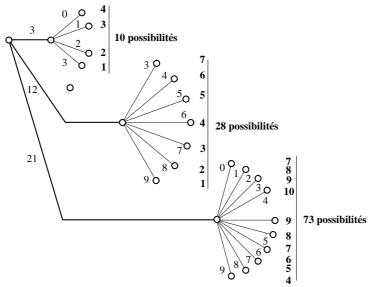
Pour être divisible par 2 et 5, le nombre doit se terminer par le chiffre 0.

La somme des autres chiffres doit être multiple de 9.

On doit donc placer 3 chiffres dont la somme est égale à 3, à 12 ou à 21.

Un travail un peu long, schématisé par l'arbre ci-dessous, montre qu'il y a respectivement 10, 28 et 73 possibilités pour chacun de ces trois cas.

Au total 111 possibilités.



K96C30: Réponse C.

Pour écrire d'abord ce qui correspond à des nombres à 1 chiffre, on écrit :

$$1+2+3+4+5+6+7+8+9$$
, soit 45 chiffres.

Ensuite on écrit des nombres à 2 chiffres ; et c'est le 1996 – 45, soit 1951ème qui nous intéresse dans cette suite. (On n'arrivera pas aux nombres à trois chiffres qui ne commencent que bien plus loin.) Comme 1951 est un nombre impair, c'est donc un chiffre correspondant à des dizaines (comme le 1er, le 3ème, le 5ème, ...).

Quand on commence à écrire vingt fois 20, on en a déjà écrit $2 \times (10+11+12+...+19)$ soit $2 \times (5 \times 29)$ puisque 29 = 10 + 19 = 11 + 18 = 12 + 17 = 13 + 16 = 14 + 15; cela fait 290. Quand on commence à écrire trente fois 30, on en a écrit en plus $2 \times (20+21+22+...+29)$ soit $2 \times (5 \times 49)$, c'est-à-dire 490.

Quand on commence à écrire quarante fois 40, on en a écrit en plus $2 \times (30 + 31 + 32 + ... + 39)$ soit $2 \times (5 \times 69)$, c'est-à-dire 690.

On en est alors à 290 + 490 + 690, soit 1470 et la série des quarante (qui comptera plus de 690 chiffres et « certainement » 890) dépassera 1951.

C'est donc un « 4 » qui se trouvera en 1996 ème position.

K04J25: Réponse 6.

Les nombres cherchés sont multiples de 12, donc de 4; leurs deux derniers chiffres forment un nombre multiple de 4 et leur somme est strictement inférieure à 6. Ces deux derniers chiffres ne peuvent donc être que 00, 04, 12, 20, 32 ou 40.

Les nombres cherchés, strictement inférieurs à 2004 et à 4 chiffres, ont 1 comme premier chiffre, et on trouve le deuxième chiffre de façon que la somme des chiffres soit 6. D'où les 6 nombres : 1500, 1104, 1212, 1320, 1032, 1140.